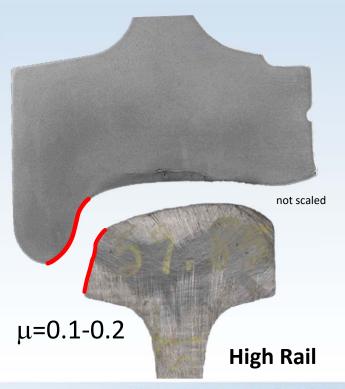
Effective Gauge Face/Wheel Flange Lubrication: A Solutions Based Approach

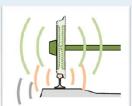
Marco Santoro
L.B. Foster Company

Overview


- Benefits of Lubrication
- Application Systems
 - Mobile (solid sticks and onboard oil spray)
 - Trackside (wayside, drilled rail and spray)
- Implementation
- Case Studies
- Conclusions

Flange/Gauge Face Lubrication

- Friction to a minimum level
- Gauge face lubrication widely implemented in the world
- Rail/Wheel Wear is the primary issue
- Impacts:
 - Rail Wear (gauge face/corner/restraining)
 - Wheel Wear (flange/back of flange)



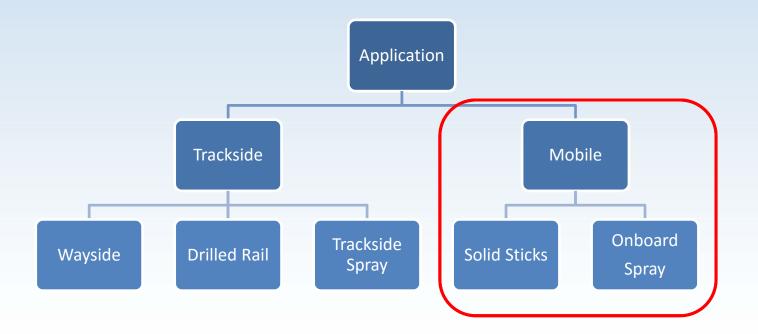
Additional Benefits

Rail / Wheel Wear

Flange Noise

RCF Development

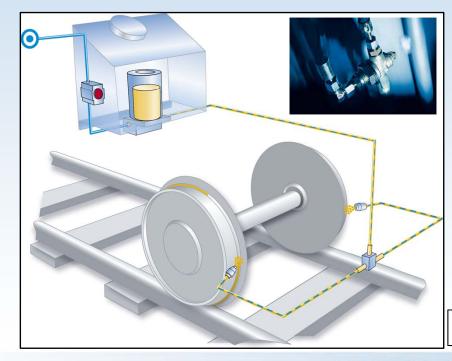
Derailment
Potential



Energy Efficiency

WRI 2016

Lubrication Approaches


Onboard Spray Systems

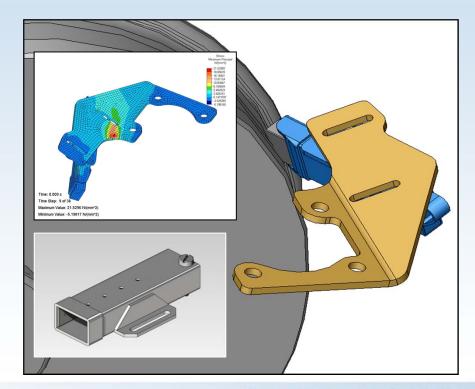
Oil Spray Components:

- Controls
- Reservoir
- Pump [usually piston]
- Spray nozzles

Key Features:

- Air or airless versions
- Curve sensors
- Multiple vehicle types

Obtained from www.skf.com



Onboard Solid Sticks

Primary Components:

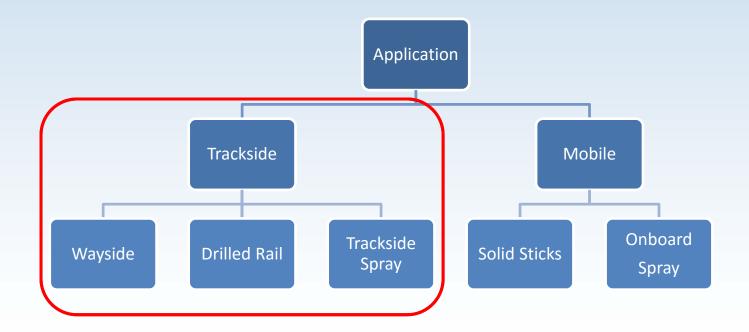
- Interface Bracket
 - Connects frame and applicator
- Applicator
 - Houses sticks

- Safety: design validation
- Optimized for installation and adjustment

Mobile: Considerations

Spray Systems:

- Large install base, commonly used in Europe
- Single application system per train
- Fine tuned controls often with curve sensing capability


Solid Sticks:

- Large install base generating large volumes of engineering and performance data
- High quality lubrication, consistent application/performance with no tread/TOR migration
- Simple, clean system, easy to maintain

Lubrication Approaches

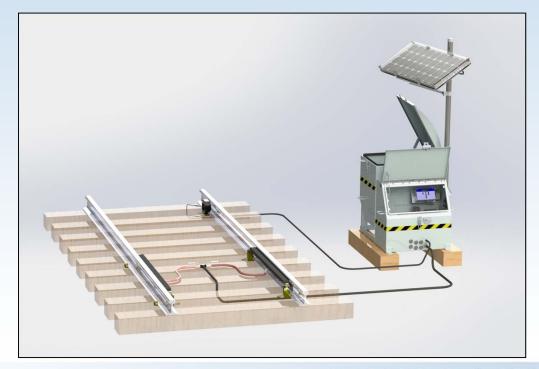
Trackside Lubrication


History:

- Historical approach to stationary track lubrication
- Many advances in technology over the years [output control, bars]
- Multiple suppliers of equipment

Application Strategies:

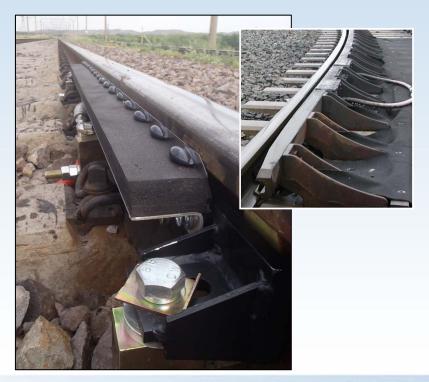
- Wayside lubricators
- Drilled rail
- Trackside spray



Wayside Lubricator

Accepted industry standard **Primary Components:**

- Tank [reservoir/electrical]
- Control System
- Pump/motor
- Wheel/train sensor
- Distribution hoses
- Application bars
- DC or AC power

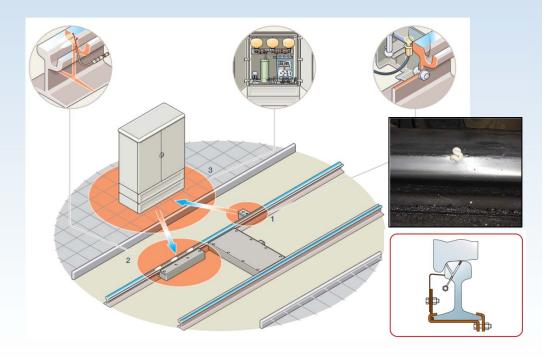


Application Bars

Interface with Rail/Wheel:

 Key component of a trackside lubricator for lubricant pickup and distribution

- Multiple distribution ports
- Trough or guide
- Application to running or restraining rails
- Easy to install/maintain



Trackside: Drilled Rail

Drilled Rail Lubricator:

- Wall or pole mounted
- Controls, pump, reservoir

- Application via holes drilled in the head of the rail
- Suitable for embedded track sections
- Gauge, restraining rail, U-rail

Trackside: Spray

Spray System Features:

- Wall or pole mounted
- Controls, pump and reservoir
- Application by nozzles

- Application via nozzles aimed at the wheel or the head of the rail
- Multiple manufacturers

Trackside: Considerations

Wayside:

- Effectively coats entire circumference of the wheel providing longer carrydown distance
- Broad range of application rates

Drilled Rail:

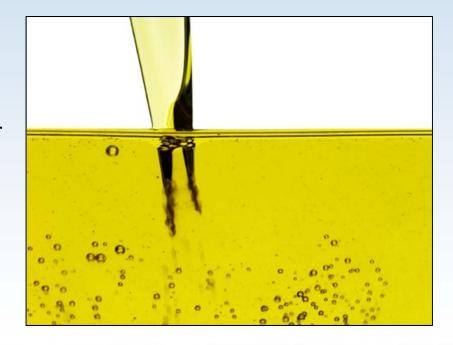
 Can be installed on embedded track, including U-rail guideway

Spray Systems:

Ability to apply grease or oil

What is the Right Consumable?

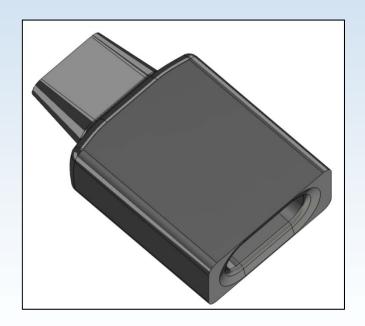
- Mobile
 - Solid Sticks
 - Oils
- Trackside
 - Grease
 - Oils



Onboard Spray

Onboard Spray System consumable characteristics:

- Oils or low viscosity greases [NLGI 000]
 - May contain oil soluble additives or solid lubricants
- Generally single grade
- Multiple suppliers
- Biodegradable varieties available



Solid Lubricant Sticks

Solid Stick features:

- Solid lubricant in thermosetting resin or other carrier
- Contains no oil or liquid components
- Consistent performance without migration to tread/TOR
- No contamination of the track structure, ballast or vehicle equipment
- Sticks are self extinguishing and nontoxic

Trackside Grease

Characteristics:

- Compositional components
- Stability and consistency
- Retentivity/carrydown is a key feature for performance
- Functional temperature range
- Manufacturing consistency

Three Main Families:

- Ultra High Performance synthetic or highly refined base oils
- Petroleum Based industry standard
- Bio Based readily biodegradable for environmentally sensitive areas

Trackside Grease: Considerations

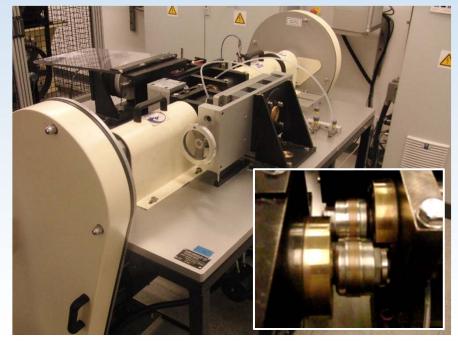
Ultra High Performance:

- Advantage: excellent carrydown at low application rates, wide temperature range
- Limitations: high cost per pound/kg

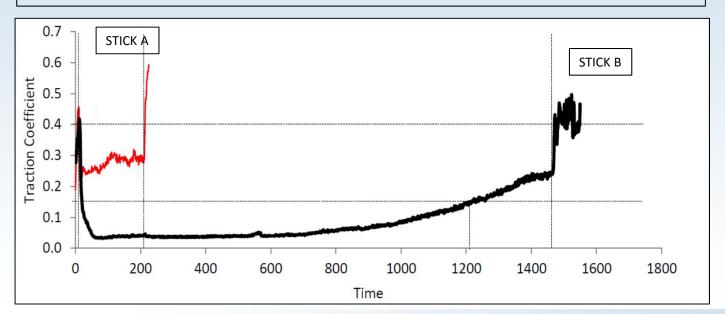
Petroleum Based:

- Advantage: good performance at intermediate price
- Limitations: wide range of qualities, seasonal temperature range

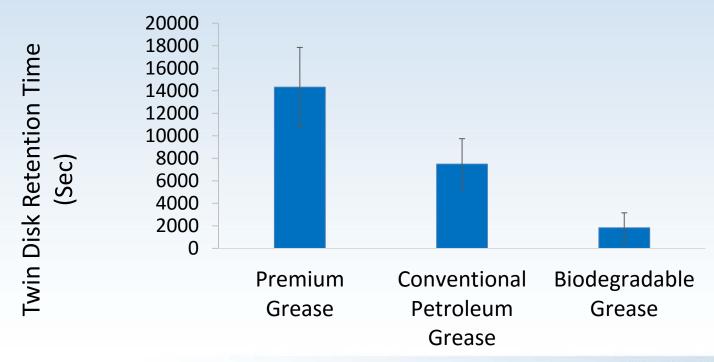
Bio Based:


- Advantage: ranges of biodegradability
- Limitations: carrydown performance, seasonal temperature range

Consumable Selection


- Multiple suppliers of consumables
- Different components/formulations
- How to understand the differences?
- Field data and published literature
- Twin Disk Laboratory testing designed to simulate rail wheel interface
 - Friction levels
 - Retentivity

Solid Stick Lubricant Composition


Twin disk testing of retentivity of various stick compositions

Grease Retentivity

Implementation

Standards: Application/Equipment

- Standards for lubricant application and equipment are in place in Europe, UK, AUS and North America
- Mainly focused on equipment positioning/usage but beginning to look at consumables
- Rigid process for approval and focused on risk mitigation to fleet operation

Implementation

Standards: Consumables

- Standards for lubricants such as the NLGI specifications
- Tests developed from industrial application but they may not directly correlate to effectiveness in a rail environment
- Do not allow for alternative or new materials
- Improved standards is an area of opportunity for the rail industry

Implementation

Railroad/Infrastructure

- Technical Considerations
- System Details
- Organizational Characteristics

Technical Considerations

"Raw" Engineering Issues:

- What is the issue to be addressed?
 - Wheel wear, rail wear, noise.
- Is it an isolated issue or multiple locations or system wide?
- How severe is the issue?
- Is the track or vehicles accessible?
- What is practical for the application?

System Details

Characteristics:

- Is the system old or new?
 - Were the changes to track or vehicles?
- Who owns/operates the track and vehicles?
 - Outside party contracts?
- Is the track shared by multiple users?
- Vehicle type(s) and configuration?
- Track considerations?

Organizational Features

Culture/Personnel:

- Who has the key decision making power?
- Vehicle and track departments working relationship?
- Where do the concerns come from?
- Who has the budget?
- Who realizes the benefits?
- Commitment to maintenance?

Case Study 1

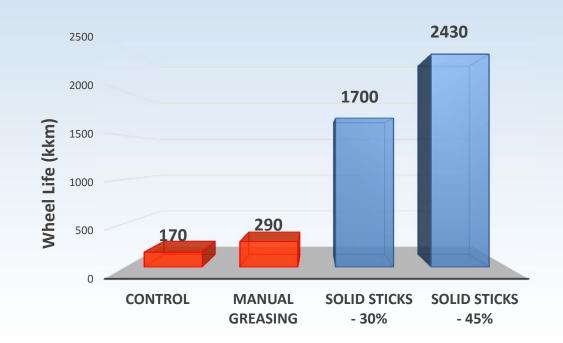
Solid Sticks – Wheel Flange Wear

Metro System [Suburban]

- Kuala Lumpur Airport
 Express with moderate
 curvature
- Commissioning tests indicated excessive flange wear on all vehicles
- Projected wheel life of 170,000 km (4.5 months operation)

Short term action:

- Manual greasing increased projected wheel life to 290,000 km
- Manual application had a high labor costs.
- Misapplication of grease to railhead caused skid flats.
- Concerns about contamination from wayside lubricators



- Decision to implement train mounted solid sticks on fleet as a permanent solution.
- Fleet was initially outfitted at 30% coverage.
- Manual lubricant application stopped
- Wheel flange life extended by 10x at 30% coverage.
- Wheel flange life extended by 14x at 45% coverage.

- Reduction in rail wear extending life of track.
- Increased train availability.
- Environmental cleanliness, both track and train.
- Net savings >US\$ 2,000,000 in wheel-related costs.

Case Study 2

Solid Sticks – Gauge Face Wear

Metro System

Rail Wear: Solid Sticks

Ankara Turkey

- Excessive rail gauge corner wear 9 months after commissioning.
- No lubrication planned in the design stages
- Temporary hand application of dry-film lubricant was introduced to mainline switches and some yard check rails.
- Initial reduction of wear rates with hand application of liquid lubricant.
- Concerns over top of rail contamination from onboard or trackside oil/grease application affecting acceleration/braking.

Rail Wear: Solid Sticks

- Train mounted solid sticks were introduced due to the following advantages:
 - Continuous application
 - Precise application no lubricant migration to TOR
 - Simple, reliable, low maintenance requirements
 - Clean, non-toxic, non-flammable
 - Proven track record



Rail Wear: Solid Sticks

- 25% wheel coverage
- 200-500% reduction in wear achieved
- Extended mainlineR300m curve rail life to20 years
- Also saw reductions in wear on yard curves and switches

Case Study 3

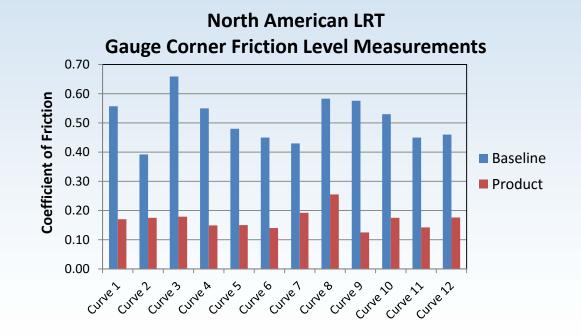
Trackside Grease – Noise Control

Light Rail System

Noise Control: Trackside

North American Transit:

Concern over high noise levels in a new line being constructed.


- Concern in curves with a radius less than 400 meters.
- Trackside application of grease to mainline rails on existing lines had been successful for controlling noise.
- Required carrydown of 0.5 miles to cover multiple curves

Noise Control: Trackside

- Tribometer
 measurements used
 to verify application
- Sounds level measurements taking in revenue service
- Successfully controlled noise levels

Conclusions

- Effective gauge face/wheel flange lubrication can successfully:
 - Mitigate high wear rates of both wheel flanges and rail gauge face/corner
 - Provide additional benefits
- Variety of application strategies and consumable options.
- Selection needs to include review of system details, technical aspects and the railroads culture.
- Ideally looked at with a systems approach as the benefits are realized by both the vehicles and track.

Thank You for Your Attention

